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Abstract—The network coding problem across multiple
unicasts is an open problem. Previously, the capacity region
of 2-hop relay networks with multiple unicast sessions and
limited feedback was characterized where the coding and
decoding nodes are neighbors and packet erasure channels
are used. A near-optimal coding scheme that exploits the
broadcast nature and the diversity of the wireless links was
proposed. However, the complexity of the scheme is hyper–
exponential as it requires the knowledge of the packets
that are received by any subset of the receivers. In this
paper, we provide a polynomial time coding scheme and
characterize its performance using linear equations. The
coding scheme uses random network coding to carefully
mix intra and intersession network coding and makes
a linear, not exponential, number of decisions. We also
provide a linear programming formulation that uses our
2-hop relay network results as a building block in large
lossy multihop networks. Through simulations, we verify
the superiority of our proposed schemes over state-of-the-
art.
Index Terms—Network coding, lossy wireless networks,

2-hop relay networks, capacity, fairness.

I. INTRODUCTION

Wireless networks have emerged as an integral part of
our lives. Therefore, optimizing the performance of such
networks is of crucial need. Maximizing the throughput
of the users while achieving fairness among them is
one of the fundamental performance metrics that have
to be optimized. The term capacity or capacity region,
of wireless networks, can be used in this context [1], as
it refers to the set of possible rates that can be achieved
by the users simultaneously.
Different works have targeted the characterization

of the capacity and the design of different algorithms
that can achieve the capacity or portion of it. These
approaches can be classified into three main categories.
Namely, cross-layer design, intrasession network coding
(IANC), and intersession network coding (IRNC). The
objective of cross-layer design is to jointly optimize
the operations at different layers of the OSI reference
model through the use of the queue length information
at different nodes [2], [3], [4], [5]. IANC exploits link
diversity where links are lossy to maximize the capacity

of wireless networks [6]. Intersession network coding
(IRNC) [7] mixes packets of different flows to maxi-
mize the capacity by exploiting the broadcast nature of
wireless links.
Using IANC, intermediate nodes perform coding on

the packets of the same flow. In IANC, the source
node divides the message it wants to send into batches,
each having K packets of the form P1, . . . , PK . The
source node keeps sending coded packets of the form
∑K

i=1 αiPi, where αi, ∀i is a random coefficient chosen
over a finite field of large enough size typically 28–
216. Upon receiving a coded packet, the intermediate
relay node checks to see if the coded packet is linearly
independent to what it has received before. If so, it keeps
the coded packet, otherwise it drops the packet. When the
destination receives any K linearly independent packets,
this means that it can decode all of the packets of the
batch. Therefore, it sends a feedback to the source to stop
sending from this batch and move to the next batch.
IRNC on the other hand exploits the broadcast nature

of wireless links. Take Fig. 1 from [7] as an example; in
which we have two opposite direction flows between s1
and s2 through r, if the broadcast nature of wireless links
is not exploited and assuming that nodes s1 and s2 are
out of range of each other, we need four transmissions
to exchange two packets between nodes s1 and s2. The
relay node r can exploit the broadcast nature of its output
links and reduce the number of transmissions to three
using network coding by XORing the two packets, as
shown in the figure.
In order to operate the network closer to the capacity,

the three approaches have to be used jointly. One can
think of cross-layer optimization as an orthogonal ap-
proach to the other approaches. Therefore, using IANC
jointly and optimally with IRNC provides insights into
how to achieve the objective of approaching the capacity
of wireless networks. However, the joint IANC and
IRNC problem is NP-hard [8] and linear coding is not
sufficient for the problem [9]. Nonetheless, one can limit
network coding to be in a single-hop [7], where the
coding node is a neighbor of the decoding node.



IANC fails to resolve the bottleneck when different
flows are using an intermediate node. On the other hand,
most of IRNC protocols do not consider lossy links.
COPE [7] turns off IRNC when the links have loss rates
above 20%. The work in [10] studied single-hop IRNC
in lossy wireless networks. The authors in [10] consider
only XOR operations, did not optimize overhearing, and
treated every packet separately, not as a member of
a flow. The authors showed that the problem is #P-
complete and provided several heuristics. It is still an
open problem how to jointly mix IANC and IRNC. The
work in [11] considered the joint design of IANC and
IRNC in wireless networks. However, the benefit was
marginal and no theoretical analysis or guarantees were
provided. In our previous work [12], and in [13], the
joint IANC and IRNC in lossy 2-hop relay networks
is considered. The work’s optimized overhearing, not
limitied to XOR, considered flows instead of packets and
assumed limited feedback. The capacity region for the
problem is characterized using linear equations when the
number of sessions is less than three. For more than three
sessions, a near-optimal coding scheme is provided and
its performance is characterized using linear equations.
The complexity of the near-optimal scheme is hyper ex-
ponential. Even though a near-optimal scheme is found,
different problems are still open and need investigations.
In this work, we tackle some of these problems.

The main contribution of this work is two-fold. (i) We
develop a polynomial time coding scheme for the 2-hop
relay network problem that makes a linear number of
decisions and uses random network coding. We charac-
terize the performance of the polynomial time scheme
using linear constraints in terms of the links delivery
ratios. (ii) Since achieving the full capacity region of
multihop wireless networks is an open problem, we
formulate an achievable rate region for general lossy
multihop networks when using any achievable scheme
for 2-hop relay networks as a building block. The formu-
lation is also in terms of linear equations. We evaluate the
effectiveness of our schemes in lossy wireless networks
by simulating the different linear equations.
The rest of the paper is organized as follows: In

Section II, we describe our settings. We then present the
polynomial time algorithm in Section III. We provide an
extension to the multihop networks case in Section IV
and present our simulation results in Section V. We
conclude the paper in Section VI.

II. THE SETTING
In an N -session 2-hop relay network, we have N

sessions, each with a source and destination pair where
source si would like to send packets to destination di,
∀i ∈ {1, . . . , N} with the help of the relay node r.
Figure 2(a) represents a 2-session 2-hop relay network.

PEC in the figure stands for packet erasure channel
such that the sent packet by the source of the PEC is
received by any subset of the receivers of the PEC.
Each of si and r can use the corresponding PEC n
times, respectively. Each of si would like to send n×Ri

packets and we are interested in the largest achievable
rate vector (R1, . . . , RN ) that guarantees decodability of
the packets sent by si at di, ∀i with close-to-1 probability
for sufficiently large n and finite field size. In this
paper, we use puv to represent the delivery ratio of link
(u, v), and we use Xi to represent the set of symbols
representing the set of packets sent by node si.
To model the “reception report” suggested by practi-

cal implementations, we enforce the following sequen-
tial, round-based feedback schedule: Each of si, ∀i ∈
{1, . . . , N} transmits n symbols, respectively. After the
transmission of N × n symbols, N reception reports
are sent from d1, . . ., dN , back to the relay r so that
r knows which packets have successfully arrived at
which destinations. After the reception reports, no further
feedback is allowed and the relay r has to make its own
decision of how to use the available n PEC usages to
guarantee decodability at the destinations. In our setting,
we also assume that the success probability parameters
of all PECs and all coding operations are known to all
nodes. The only unknown parts are the values of the sent
packets by si, ∀i.
For the purpose of illustration, a simplified network

setting is also depicted in Fig. 2(b), in which the packets
sent by si will not be overheard by the 2-hop-away
destination di. For future reference, we say Fig. 2(a)
admits OpR, as the packets can be overheard by the
two-hop destinations while Fig. 2(b) does not admit
OpR. Without the loss of generality, we assume that
prdi

≥ prdi+1
, ∀i, which can be achieved by relabelling

the sessions.
For convenience, we use nRIcL

i to denote the number
of packets received by the destination nodes of the
sessions in the set L and not received by the destination
nodes of the sessions in the set I after node si sends n
packets. We also use XIcL

i to refer to the set of symbols
representing these packets. For example, nR1c3

2 is the
number of packets not received by d1 and received by
d3 when node s2 sends n packets. Also, X1c3

2 is used to
denote the set of the symbols representing these packets.
We also use Xi to refer to the symbols representing
the packets sent by node si. Table I summarizes the
symbols used for the 2-hop relay network results used
in Sections III.

III. LOW COMPLEXITY ALGORITHM
In this section, we provide a low complexity coding

scheme to be implemented at the relay node. The scheme
is described in Algorithm 1: After the sources send their
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Fig. 2. Illustration of 2-session relay networks.
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Symbol Definition
N Number of sessions
ic Not session i
n Number of time slots node r is scheduled
Ri Rate of session i
Xi Symbols representing the set of packets for session i
si Source of session i
di Destination of session i
r Relay node

t(u) Fraction of the time node u is scheduled
puv Delivery rate between nodes u and v

XIcL
i The packets sent by si and overheard by dj , ∀j ∈ L.

and not overheard by dk, ∀k ∈ I .
RIcL

i The rate of the packets represented by XIcL
i .

TABLE I
SUMMARY OF THE SYMBOLS USED FOR 2-HOP RELAY NETWORK.

Algorithm 1 Low Complexity Algorithm
1: W0 ← 0;
2: for i ← 1 to N do
3: if i = N then
4: Wi = n
5: else
6: Wi ← n[

∑

j:j<i
1

prdj

(R(i+1)c

j +
∑

k:i>k>j R
kck+1...i+1
j )]

7: end if
8: Perform random linear network coding RLNC

on the packets that belong to the following sets
{X2...i

1 , . . . , X i
i−1, Xi}

9: Send the coded packets in (Wi−Wi−1) time slots.
10: end for

packets, the relay node receives one feedback packet
from every destination so that it acquires the knowledge
of the overheard packets. Based on this knowledge, the
relay node finds the packets that belong to each set of
the following: {X2...i

1 , . . . , X i
i−1, Xi}, ∀i ∈ {1, . . . , N},

which we call the i-th collection of sets. For every i,
the relay node performs random linear network coding
RLNC on the packets of the i-th collection of sets and
send the coded packets in n× (Wi −Wi−1) time slots.

We call these coded packets the i-th batch Bi. Also,
Wi, ∀i are auxiliary variables that we will use in the
proofs. Note that we here mix both IANC and IRNC by
coding packets of the same session and others among
different sessions. The following theorem characterizes
the performance of Algorithm 1:
Theorem 1: The following set of rates can be

achieved by the coding scheme in Algorithm 1:

Ri +
∑

j:j>i

Ric

j +
∑

j:j<i

prdi

prdj

(Ric

j

+
∑

k:i>k>j

Rkck+1...i
j ) ≤ prdi

, ∀i (1)

The proof of this theorem is provided in the appendix.
Note that Algorithm 1 has a running time of O(N).
The following corollary can be obtained from the

examples above and from [12].
Corollary 1: When there are two sessions i.e. N = 2,

Algorithm 1 achieves the capacity region of the network.
If we assume that the erasure patterns through the

links are independent, we can characterize the perfor-
mance of Algorithm 1 using a linear program where
the only variables are Ri, ∀i, according to the following
corollary:
Corollary 2: The achievable rate of Algorithm 1 can

be represented by the following linear program that only
requires the knowledge of the delivery rates of the links

Ri +
∑

j:j>i

[Rj − psjdi
]+

+
∑

j:j<i

prdi

prdj

[Rj −
∏

k:j<k≤i

psjdk
]+ ≤ prdi

.

Here, [.]+ is a projection on [0,∞].
Proof: To maximize overhearing, the term Rjic

in (1) can be rewritten as [Rj − psjdi
]+. The term

(Ric

j +
∑

k:i>k>j R
kck+1...i
j ) in (1) can be rewritten as

Rj − Rj+1...i
j . Assuming that the channels are i.i.d, we

have:

Rj −Rj+1...i
j = [Rj −

∏

k:j<k≤i

psjdk
]+,



which completes the proof.
When flexible scheduling is used. i.e. node u is

scheduled for t(u) fraction of the time, Algorithm 1 can
be modified to Algorithm 2.

Algorithm 2 Flexible Scheduling Algorithm
1: W0 ← 0
2: for i ← 1 to N do
3: if i = N then
4: Wi = n
5: else
6: Wi ← n[

∑

j:j<i
1

prdj

(R(i+1)c

j +
∑

k:i>k>j R
kck+1...i+1
j ]

7: end if
8: Perform RNC on the packets that belong to the

following sets {X2...i
1 , . . . , X i

i−1, Xi}
9: Send the coded packets in t(r) × (Wi − Wi−1)

time slots.
10: end for

Corollary 3: When flexible scheduling is used. i.e.
node u is scheduled for t(u) fraction of the time, the
achievable rate of Algorithm 2 is

Ri +
∑

j:j>i

[Rj − t(sj)psjdi
]+

+
∑

j:j<i

prdi

prdj

[Rj − t(sj)
∏

k:j<k≤i

psjdk
]+ ≤ t(r)prdi

.

If the 2-hop relay network admits OpR, the relay
network can perform coding on only the vectors in the
complementary space of the vectors directly received
by the intended receiver, which gives us the following
corollary:
Corollary 4: If the 2-hop relay network admits OpR,

the achievable rate of algorithm 2 is:

Ri +
∑

j:j>i

[Rj − t(sj)(psjdj
+ (1− psjdj

)psjdi
)]+

+
∑

j:j<i

prdi

prdj

[Rj − t(sj)(psjdj
+ (1− psjdj

)

∏

j<k≤i

psjdk
)]+ ≤ t(s1)ps1d1

+ t(r)prdi

IV. EXTENSIONS TO THE MULTIHOP CASE
In this section, we build on the 2-hop relay network

results to study the throughput and fairness benefits
of using IANC and IRNC jointly in multihop wireless
networks. We provide a linear programming formulation
of an achievable rate region that uses the 2-hop relay
networks results as building blocks.
We consider a general multihop wireless network

represented by a graph G = (V,E), where V is the
set of vertices representing the nodes and E is the

Symbol Definition
u, v Intermediate nodes
P(i) Path used for session i

V1(u, i) Next hop node of u on P(i)
V2(u, i) Next hop node of V1(u, i) on P(i)
U1(u, i) Previous hop node of u on P(i)
U2(u, i) Previous hop node of U1(u, i) on P(i)
yuv(i) Rate of IANC packets for session i through

link (u, v)
y′uv(i) Same as yuv(i), but for joint IANC and

IRNC packets
t(u, i) Fraction of the time node u is scheduled to send

IANC packets of session i
t′(u) Fraction of the time node u is scheduled to send

joint IANC and IRNC packets
P J
u The probability that packet sent by node u is

overheard by any node in J
ck(u) The k-th session that uses node u.
γu,v(i) By definition equals to yuv(i)

puv
.

TABLE II
SUMMARY OF THE SYMBOLS USED IN THE MULTIHOP CASE.

set of edges representing the links between the nodes.
Transmission by a node can be overheard by multiple
nodes, which we model by a hyperarc (u, J), where
u is the transmitter and J is a subset of the set of
direct receivers. There are N sessions in the network.
For every session i, the source node si wants to send
packets at rate Ri to the session’s destination node di
over possibly multiple intermediate nodes. We use P(i)
to refer to the path used for session i. For every node
u on path P(i), V1(u, i) (U1(u, i)) represents the next-
hop (previous-hop) node, respectively, on that path and
V2(u, i) (U2(u, i)) represents the next-hop (previous-
hop), respectively, node of V1(u, i) (U1(u, i)) on P(i).
We assume that every sent packet is either a packet

formed by performing IANC for the packets of one
session or joint IRNC and IANC for different sessions’
packets. This includes the case of sending non-coded
packets as a special case. We use yuv(i) to represent the
rate of linearly independent IANC packets for session i
that are sent by node u and can be decoded by node
v, only if node v is di, or can be forwarded by v.
Symbol y′uv(i) represents the same as yuv(i), but for
packets with joint IANC and IRNC. The fraction of
time node u is scheduled for sending session i IANC
coded packets is represented by t(u, i). t′(u) represents
the fraction of time node u is scheduled to send joint
IANC and IRNC packets. Symbol t(u) represents the
fraction of time node u is scheduled. Table II rep-
resents the symbols used for the multihop case. To
avoid the use of complex notations, we use in this
section yuv, y

′
uv, γuv, V1(u), V2(u), U1(u), U2(u) to rep-

resent yuv(i), y′uv(i), γuv(i), V1(u, i), V2(u, i), U1(u, i),
U2(u, i), respectively.
Using IANC only and assuming we do not have



specified paths, the linear constraints that specify the
capacity region are as follows:

∑

v:u$=v

yvu −
∑

v:u$=v

yuv ≤

{

−Ri u = si

0 Else,
(2)

∀i, ∀u ∈ E\di (3)
∑

v:v∈J

yuv ≤ t(u, i)pJu, ∀(u, J), ∀i, (4)

where pJu is the probability that any node in J receives
the packet. The constraints in (2) represent balance equa-
tions such that the total received linearly independent
packets, and the total generated packets at a node, should
be at most equal to the totally sent linearly independent
ones. Constraint (4) states that for any set of nodes that
can receive the sent packets by a specific node, the total
number of linearly independent packets per unit time
that these nodes can forward equals to the probability
that any one of these nodes received the packet which is
pJu . If the paths are not specified, the solution of ((2)-(4))
will result in a back-pressure algorithm, which has bad
delay performance and might not converge to the optimal
solution, as noted in [14]. Therefore, in the following,
we study the case of specified paths. The formulation
becomes:

yU1(u)u + yU2(u)u

−yuV1(u) − yuV2(u) ≤

{

−Ri u = si

0 Else,
∀i, ∀u ∈ E\di, (5)

yuv ≤ t(u, i)puv, ∀i, ∀u, v ∈ P(i) (6)
yuV1(u) + yuV2(u) ≤ t(u, i)(puV1(u) + puV2(u)

− puV1(u)puV2(u))∀u ∈ P(i)
(7)

The above formulation can be obtained from ((2)-(4))
by noting that the only hyperarc for node u through the
path for session i is the one with the receivers being
V1(u) and V2(u). This modeling agrees with practical
implementations of IANC, as in [6], [15], which state
that overhearing of a node transmission over a path
happens only for one and two hop away nodes.
As it is hard to jointly use IANC and IRNC in

multihop networks, we provide a restriction that allows
us to use the 2-hop relay networks results as a building
block in large multihop networks. The restriction is that
joint IANC and IRNC opportunities are limited to be in
the form of 2-hop relay networks, where the coding node
is the relay node and the set of decoding nodes is a subset
of the next-hop nodes of the relay node. Therefore, the
general lossy multihop network can be decomposed into
a superposition of IANC alone traffic and joint IANC
and IRNC traffic in 2-hop relay networks.

The assumption we have, has the following implica-
tions on the capacity region: (1) In Fig. 3, if there are two
sessions, one of them goes through the path v1w2v2rv3,
the other one goes through u1u2ru3, and joint IANC &
IRNC can happen at node r. Due to our restriction, we
assume there is no side information from w2 to u3, nor
from u1 to v3. If such side information exists, we ignore
it. (2) If in the same figure there is another session that
goes through w1w2w3, and node w2 is acting as a relay
node for performing joint IANC & IRNC between this
session and the session that goes through v1w2v2rv3,
and the joint IANC and IRNC packets are overheard by
r, node r will deal with these packets as useless and
drop them.
Under the assumption that the channels are indepen-

dent, for N-sessions 2-hop relay networks, let
t

∆
= [t(r), t(s1), . . . , t(sN )],ps

∆
= [ps1r, . . . , psN r],

pd

∆
= [prd1

, . . . , prdN
],psd

∆
= [ps1d, . . . ,psNd], and

psld

∆
= [psld1

, . . . , psldl−1
, psldl+1

, . . . , psldN
]. In the

case when dl cannot overhear sl, we use

CapA(t,psd,ps,pd) =
{

(R1, . . . , RN ) :

The rates R1, . . . , RN satisfy the linear programming

constraints for the capacity region A
}

.

A is any achievable rate region for the 2-hop relay
network that uses IANC and IRNC jointly. It could be
the optimal capacity region in [13], or an approximation
of it, as in this paper. For example, when N = 2, the
rates that satisfy

R1 ≤ min(t(s1)ps1r, t(r)prd1
− (R2 − t(s2)ps2d1

)+)

R2 ≤ min(t(s2)ps2r, t(r)prd2

− (R1 − t(s1)ps1d2
)+

prd2

prd1

)

belong to CapA, where A is the optimal capacity region.
When dl can overhear sl, and if dl forwards γlpsldl

linearly independent symbols of the overheard packets,
or decodes them if it is the last destination of the
packets, joint IRNC and IANC should happen for the
symbols in the complementary spaces of the forwarded
or decoded symbols. Letting γ

∆
= [γ1, . . . , γN ] and

p
′
sd

∆
= [ps1d1

, . . . , psNdN
], we use

Cap′A(γ, t,p′
sd,psd,ps,pd) =

{

(R′
1 = R1 − γ1ps1;d1

, . . . , R′
N = RN − γNpsN ;dN

) :

The rates R1, . . . , RN satisfy the linear programming
constraints with OpR when dl can overhear sl.

}

.

For example, when N=2, any (R′
1, R

′
2) that

satisfy the following constraints belong to
Cap′A(γ, t,p′

sd
,psd,ps,pd), where A is the optimal



capacity region.

R′
1 ≤ min(Y1, t(r)prd1

− (R2 − Z1)
+)

R′
2 ≤ min(Y2, t(r)prd2

− (R1 − Z2)
+)

prd2

prd1

),

where Y1, Y2, Z1, Z2 satisfy the following:

Y1 ≤ t(s1)(ps1r + ps1d1
− ps1d1

ps1r)− γ1ps1d1
.

Y1 ≤ t(s1)ps1r.

Y2 ≤ t(s2)(ps2r + ps2d2
− ps2d2

ps2r)− γ2ps2d2

Y2 ≤ t(s2)ps2r.

Z1 ≤ t(s2)(ps2d1
+ ps2d2

− ps2d1
ps2d2

)

Z1 ≤ t(s1)(ps1d2
+ ps1d1

− ps1d2
ps1d1

)

Using random network coding and when considering
the symbols directly received from sl by any dm or r,
any two symbols related to two different received packets
are linearly independent. Therefore, using the feedback,
the relay will be able to know the coefficients related to
the received packets by its next-hop nodes to generate
packets with coefficients in their complementary space.
The following linear equations represent an achievable
rate region that uses joint IANC and IRNC:

yU1(u)u + yU2(u)u + y′U1(u)u

−yuV1(u) − yuV2(u) − y′uV1(u)
≤

{

−Ri u = si

0 Else,
∀i, ∀u ∈ E\di, (8)
yuv = γuvpuv ≤ t(u, i)puv, ∀i, ∀u, v ∈ P(i) (9)
yuV1(u) + yuV2(u) ≤ t(u, i)(puV1(u) + puV2(u)

− puV1(u)puV2(u)), ∀u ∈ P(i).
(10)

(y′uV1(u,1)(1), . . . , y
′
uV1(u,k)(k)) ∈

Cap′A(γu, tu,p′u
sd,p

u
sd,p

u
s ,p

u
d). (11)

Here, k is the number of sessions intersecting at node
u. To avoid the complex notations, we assume that these
sessions are 1, . . . , k. Also, we have
γu ∆

= [γU1(u,1)V1(u,1)(1), . . . , γU1(u,k)V1(u,k)(k)],
tu

∆
= [t′(u), t(U1(u, 1), 1), . . . , t(U1(u, k), k)],

p
′u
sd

∆
= [pU1(u,1)V1(u,1), . . . , pU1(u,k)V1(u,k)],

p
u
sld

∆
= [pU1(u,l)V1(u,1), . . . , pU1(u,l)V1(u,l−1),

pU1(u,l)V1(u,l+1), . . . , pU1(u,l)V1(u,k)],
p
u
sd

∆
= [pu

s1d
, . . . ,pu

skd
],

p
u
s

∆
= [pU1(u,1)u, . . . , pU1(u,k)u],

and p
u
d

∆
= [puV1(u,1), . . . , puV1(u,k)].

For session i, any node u has three different kinds of
incoming packets and three different kinds of outgoing
packets. The incoming packet types are IANC packets
received from a previous hop with rate yU1(u)u, IANC
packets overheard from a two-hop away node with rate

yU2(u)u, and joint IANC and IRNC packets received
from a previous hop with rate y′U1(u)u

. Note that due to
the restriction we have, joint IANC and IRNC packets
overheard from two-hop away nodes are dropped. The
outgoing packets can also be classified as joint IRNC
and IANC packets with rate y′uV1(u)

, IANC packets that
are received and used by the next-hop with rate yuV1(u),
and IANC packets that are overheard and used by the
next two-hop away nodes with rate yuV2(u).
The constraints in (8) state that at every node, and for

every session, the total incoming traffic at a node should
be equal to the total outgoing traffic. The constraints (9)-
(10) are for IANC and are the same as in the previous
section. Constraints (11) specify the joint IANC and
IRNC rate at node u by treating it as a relay node in a
2-hop relay network. Due to the restriction we have, at
node u, only the incoming IANC traffic from a previous
hop can be used for joint IANC and IRNC at node
u. This is reflected in the formulation by using tu as
the second argument of Cap′A, which only contains the
IANC scheduling frequency of the previous-hop nodes of
node u. Since γU1(u,l)V1(u,l)(l)pU1(u,l)V1(u,l) is the rate
of the IANC packets for session l that are sent by node
U1(u, l), overheard by the node V1(u, l), and used by that
node, the first argument in Cap′A states that joint IANC
and IRNC is performed in the complementary space of
the symbols related to these packets.

V. SIMULATIONS
In this section, we present several simulation results

to show the effectiveness of our approximation scheme
in 2-hop relay networks, and show the improvement
that joint IANC and IRNC schemes can provide for the
multihop case.
We start from a unit circle with the relay r placed

at the center. We then uniformly at random place N
source nodes si, and N destination nodes di, in the
circle (see Fig. 5). The only condition we impose
is that for each (si, di) pair, di must be in the 90-
degree pie area opposite to si (see Fig. 5). For each
randomly constructed network, we use the Euclidean
distance between each node to determine the overhearing
probability. More explicitly, for any two nodes separated
by distance D, we use the Rayleigh fading model to
decide the overhearing probability p =

∫∞

T∗

2x
σ2 e

− x2

σ2 dx,
where we choose σ2 ∆

= 1
(4π)2Dα , the path loss order

α = 2.5, and the decodable SNR threshold T ∗ = 0.06.
We assume that the overhearing event is independent

among different receivers.
For each randomly generated network, we compute

the overhearing probabilities and use the corresponding
linear constraints on the time-sharing variables t’s and
the rate variables R’s to compute the achievable rate of
each scheme.
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Fig. 4. Average throughput results for 1000 topologies with different objective functions when using no OpR and round robin scheduling.
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Fig. 6. Average throughput results for 1000 topologies with different objective functions when using no OpR and optimal scheduling weights.
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Fig. 7. Average throughput results for 1000 topologies with different objective functions when using OpR and round robin scheduling.



Fig. 5. Simulation settings.

Given a randomly generated network, the achievable
sum rates are computed for all the schemes. We then
repeat this computation for 1000 randomly generated
networks. Let ζ∗

scheme,k denote the achievable sum rate of
the given scheme for the k-th randomly chosen topology.
We are interested in the following two performance
metrics: The average sum rate over 1000 topologies

1
1000

∑1000
k=1 ζ∗

scheme,k and per topology improvement
∆
=

ζ∗

scheme,k−ζ∗

baseline,k

ζ∗

baseline,k
.

In our two-hop relay network simulations, we change
three different setting parameters. These are: (a) the use
of OpR where we consider OpR or no OpR, (b) node
scheduling method where we use round robin scheduling
or include the weight of scheduling as a new variable in
the optimization problem. If the weights of scheduling
are included in the optimization problem, we call such
a scheme the optimal scheduling scheme, and (c) the
objective function where we consider three objective
functions. The objective functions that we use are: (1)
Proportional fairness, such that the weight of session
i is the available bandwidth for that session when no
other sessions share the network; (2) strict fairness that
requires the throughput of all of the sessions to be the
same; (3) maximizing the sum of the throughput of the
sessions.
Fig. 4 shows the average throughput achieved by our

approximation scheme and the optimal one when no
OpR and round robin scheduling is used. As shown in
the figure, our scheme achieves 65%–95% of the optimal
solution depending on the number of sessions. Also, our
scheme performs similar to the pairwise scheme [12],
which requires coordination among different nodes and
has a complexity ofO(N2). Figs. 6,7, and 8 show similar
results when using OpR with the optimal scheduling.
Fig. 9 compares the achievable throughput of our

approximation scheme compared to other XOR-based
schemes. These schemes are COPE [7], CLONE [10],
the capacity achieving scheme with XOR coding [16].
The results in the figure show that our scheme performs
very close to the best XOR based scheme, while the

2 3 4 5 6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Th
ro

ug
hp

ut

N
 

 

(Poly,Sum)
(Poly,Strictft)
(Poly,PrFair)
(XOR,Sum)
(XOR,Strict)
(XOR,PrFair)
(CLONE−binary)
(COPE)

Fig. 9. Comparison of the achievable rate using different schemes.

best XOR based scheme has an exponential complexity.
The figure also shows that our scheme improves the
throughput 1.5− 3.5 folds compared to COPE, the state
of the art XOR coding scheme and by 25% over CLONE,
the state of the art XOR coding scheme optimized to
work with lossy links. The figure shows that even when
the objective is to achieve fairness, our scheme still
improve the throughput over CLONE by 10− 12%.
Fig. 10 shows the CDF function of the per topology

improvement of our schemes compared to COPE when
N = 6. The results in the figure shows that there are
topologies where the throughput improvement is four
folds. Also for half of the topologies the improvement is
over 2.7 folds. The results shows also that even when
the objective is fairness, the throughput improvement
is large. Figure 11 shows the CDF function for the
per topology improvement over CLONE-binary for 1000
topologies when N = 6. The results show that there are
topologies where the throughput improvement witnessed
by our scheme is over 60%. Also, when the objective is
to achieve fairness, more than 90% of the topologies
shows throughput improvement over CLONE-binary.

VI. CONCLUSION

In this paper, we have studied the capacity of lossy
2-hop relay networks. As the optimal solution has a
high complexity, we provide a linear time approximation
algorithm and characterize its performance using linear
constraints. Our approximation algorithm uses random
linear network coding and carefully mixes IANC with
IRNC. We also show the effectiveness of our scheme
through simulations.
For the achievable rate region in multihop wireless

networks, we provide a linear programming formulation
and show the improvements through simulations.
The results presented in this paper opens many direc-

tions for future research. Following are some of these
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Fig. 8. Average throughput results for 1000 topologies with different objective functions when using OpR and optimal scheduling weights.
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Fig. 10. The empirical CDF for the per topology improvement over
COPE with N = 6.
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Fig. 11. The empirical CDF for the per topology improvement over
CLONE-binary with N = 6.

directions: (1) Designing cross-layer and distributed al-
gorithms for the multihop case. The loose coupling
approach [3] can be used to achieve close to the capacity
with minimal overhead. (2) Studying other fundamental
questions about different types of coding like pairwise
network coding in lossy wireless networks, which we
studied before with lossless links [5], [18].
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APPENDIX A
PROOF OF THEOREM 1

Proof: We note that
∑N

i=1 |Bi| = n. Therefore,
there is enough time for the relay node to send the
batches.
After the transmission of the N batches, di uses

packets in batches Bi, . . . , BN and the packets it has
overheard to decode its own packets which belong to
the set Xi. For di, the symbols that are coded together
in batches Bi, . . . , BN which are of interest to node
di belong to one of these sets: 1) The set of symbols
overheard previously by node di; 2) the set Xi which is
of interest to node di; 3) any set of the formX ic

j , ∀j > i.
Since we are using linear coding, di can subtract any
linear combination of the packets it has overheard before.
Therefore, the achievability of Ri in (1) is guaranteed, if
di can decode all symbols in Xi and X ic

j , ∀j > i from
batches Bi, . . . , BN . Not all subsets of Xi exist in all Bi

to BN batches. Therfore, by using random coding and
for di to decode all packets in the set Xi and in the sets
X ic

j , ∀j > i, three conditions have to be guaranteed:
(1) Using (1), the number of packets in batches Bi

to BN that node di receives should be at least n(prdi
−

∑

j:j<i

prdi

prdj

(Ric

j +
∑

k:i>k>j(R
kck+1...i
j ))). This is be-

cause di is interested in decoding the packets in the sets
Xi and X ic

j from the batches Bi to BN . The number
of these packets is nRi + n

∑

j:j>i R
ic

j , and by (1), we

have nRi+n
∑

j:j>i R
ic

j ≤ n(prdi
−
∑

j:j<i

prdi

prdj

(Ric

j +
∑

k:i>k>j R
kck+1...i
j )), ∀i.

(2) If packets in the set XJ
i are not part of the coded

packets in all of the batches that di uses for decoding,
then the number of packets that i receives from the
batches where packets in XJ

i are used should be at least
nRJ

i .
(3) The number of packets that node di receives from

the batches that contain packets of the set X ic

j , ∀j > i

should be at least nRic

j .
In the following, we show that the three conditions

are satisfied:
(1) Node di receives packets from batches Bi to BN

through link (r, di). Therefore, the total number of coded
packets that di uses for decoding from these batches are

(|Bi|+ . . .+ |BN |)prdi

= nprdi
(1−Wi−1)

= nprdi
(1−

∑

j:j<i

1

prdj

(Ric

j +
∑

k:i>k>j

(Rkck+1...i
j )))

= n(prdi
−

∑

j:j<i

prdi

prdj

(Ric

j +
∑

k:i>k>j

(Rkck+1...i
j ))).

(2) The symbols that belong to Xi and are not
coded in all batches Bi to BN belong to the sets
X lc

i , ∀l > i. Symbols in the set X lc

i are coded
in batches Bi–Bl−1. Showing that from batch Bl−1

∀l > i, node i will receive Ri+1...l−1lc

i coded packets
where symbols in X i+1...l−1lc

i are used along with
other symbols to generate the coded packets, which
is equivalent to showing that ∀l > i. Node di will
receive Rlc

i of the coded packets where symbols in
X lc

i are used along with other symbols to generate
the coded packets. Let Wl = n

∑l−1
i=1

1
prdi

Wli, where
Wli = R

(l+1)c

i +
∑

k:i<k≤l R
kck+1...l+1
i . We haveWli−

W(l−1)i = R
i+1...l(l+1)c

i ≥ 0, ∀l > i. Therefore, the
number of packets in batch Bl−1 that node i receives
will be

prdi
(Wl−1 −Wl−2)

= nprdi

( 1

prdl

Wl−1l−2 +
l−3
∑

j=1

1

prdj

(Wl−1j −Wl−2j)
)

≥ Ri+1...i−1lc

i .∀l > i.

(3) From Condition 2, the number of received packets
by node dj in the batches that contain coded packets
in the set X ic

j is nRic

j . Since i < j, the channel
between (r, dj) is weaker than the channel between
(r, di). Therefore, the number of received packets by
node di in the batches that contain coded packets in the
set X ic

j is greater than or equal to nRic

j .


